Tracking iron in multiple sclerosis: a combined imaging and histopathological study at 7 Tesla.
نویسندگان
چکیده
Previous authors have shown that the transverse relaxivity R(2)* and frequency shifts that characterize gradient echo signal decay in magnetic resonance imaging are closely associated with the distribution of iron and myelin in the brain's white matter. In multiple sclerosis, iron accumulation in brain tissue may reflect a multiplicity of pathological processes. Hence, iron may have the unique potential to serve as an in vivo magnetic resonance imaging tracer of disease pathology. To investigate the ability of iron in tracking multiple sclerosis-induced pathology by magnetic resonance imaging, we performed qualitative histopathological analysis of white matter lesions and normal-appearing white matter regions with variable appearance on gradient echo magnetic resonance imaging at 7 Tesla. The samples used for this study derive from two patients with multiple sclerosis and one non-multiple sclerosis donor. Magnetic resonance images were acquired using a whole body 7 Tesla magnetic resonance imaging scanner equipped with a 24-channel receive-only array designed for tissue imaging. A 3D multi-gradient echo sequence was obtained and quantitative R(2)* and phase maps were reconstructed. Immunohistochemical stainings for myelin and oligodendrocytes, microglia and macrophages, ferritin and ferritin light polypeptide were performed on 3- to 5-µm thick paraffin sections. Iron was detected with Perl's staining and 3,3'-diaminobenzidine-tetrahydrochloride enhanced Turnbull blue staining. In multiple sclerosis tissue, iron presence invariably matched with an increase in R(2)*. Conversely, R(2)* increase was not always associated with the presence of iron on histochemical staining. We interpret this finding as the effect of embedding, sectioning and staining procedures. These processes likely affected the histopathological analysis results but not the magnetic resonance imaging that was obtained before tissue manipulations. Several cellular sources of iron were identified. These sources included oligodendrocytes in normal-appearing white matter and activated macrophages/microglia at the edges of white matter lesions. Additionally, in white matter lesions, iron precipitation in aggregates typical of microbleeds was shown by the Perl's staining. Our combined imaging and pathological study shows that multi-gradient echo magnetic resonance imaging is a sensitive technique for the identification of iron in the brain tissue of patients with multiple sclerosis. However, magnetic resonance imaging-identified iron does not necessarily reflect pathology and may also be seen in apparently normal tissue. Iron identification by multi-gradient echo magnetic resonance imaging in diseased tissues can shed light on the pathological processes when coupled with topographical information and patient disease history.
منابع مشابه
Untangling the R2* contrast in multiple sclerosis: A combined MRI-histology study at 7.0 Tesla
T2*-weighted multi-echo gradient-echo magnetic resonance imaging and its reciprocal R2* are used in brain imaging due to their sensitivity to iron content. In patients with multiple sclerosis who display pathological alterations in iron and myelin contents, the use of R2* may offer a unique way to untangle mechanisms of disease. Coronal slices from 8 brains of deceased multiple sclerosis patien...
متن کاملThe Optimization of Magnetic Resonance Imaging Pulse Sequences in Order to Better Detection of Multiple Sclerosis Plaques
Background and objective: Magnetic resonance imaging (MRI) is the most sensitive technique to detect multiple sclerosis (MS) plaques in central nervous system. In some cases, the patients who were suspected to MS, Whereas MRI images are normal, but whether patients don’t have MS plaques or MRI images are not enough optimized enough in order to show MS plaques? The aim of the current study is ...
متن کاملDetecting multiple sclerosis cortical lesions post-mortem using 7 Tesla Magnetic Resonance Imaging
Introduction: Although originally considered a white matter (WM) disease, it is now clear that focal cortical grey matter (GM) pathology is an important component of multiple sclerosis (MS). Presently available magnetic resonance imaging (MRI) techniques fail in detecting the actual amount of cortical lesions (CLs). The reason for such a failure is twofold: (i) the small size of CLs relative to...
متن کامل7 Tesla Magnetic Resonance Imaging to Detect Cortical Pathology in Multiple Sclerosis
BACKGROUND Neocortical lesions (NLs) are an important pathological component of multiple sclerosis (MS), but their visualization by magnetic resonance imaging (MRI) remains challenging. OBJECTIVES We aimed at assessing the sensitivity of multi echo gradient echo (ME-GRE) T2*-weighted MRI at 7.0 Tesla in depicting NLs compared to myelin and iron staining. METHODS Samples from two MS patients...
متن کاملIncrease in the iron content of the substantia nigra and red nucleus in multiple sclerosis and clinically isolated syndrome: a 7 Tesla MRI study.
PURPOSE To study iron deposition in the substantia nigra (SN) and red nuclei (RN), in patients with clinically isolated syndrome (CIS) and relapsing remitting MS (RRMS) and healthy controls (HC). MATERIALS AND METHODS Iron deposition was assessed using susceptibility maps and T2*-w images acquired at high resolution MRI at 7 Tesla (T). Mean intensities were calculated within circular regions ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Brain : a journal of neurology
دوره 134 Pt 12 شماره
صفحات -
تاریخ انتشار 2011